

Morae Manager Extensions

Introduction:
Plug-ins can extend the functionality of Morae Manager by adding commands to the main menu
of Manager. These menu commands will appear under “Plugins” in Manager’s main menu. A
plug-in will be able to specify which, if any, of its commands will be displayed on each tab in
Manager’s main user interface (UI). If desired, the plug-in can receive notification of events
occurring in the main UI that result from user-driven actions. The plug-in can query Manager for
information and issue commands for Manager to carry out specific actions.

Three COM interfaces are involved in extending Manager’s functionality:

1. IManagerExtension – This is the primary extension interface that must be implemented

by the plug-in. Manager will call this interface to request a list of commands

implemented by the plug-in and to provide the plug-in with an IMoraeManagerApp

interface.

2. IMoraeManagerApp – This interface is implemented by Morae Manager. The plug-in

can use this interface to query for information and to issue commands.

3. IMoraeManagerAppEvents – This optional interface can be implemented by plug-ins

that require notification of user-driven events that occur in Manager.

These three interfaces are described in more detail below. To provide an extension for Manager
the plug-in must register itself as a COM object, providing its CLSID, and indicate that it
implements the CATID_ManagerAppLevelPlugin category (789F23C7-B3DB-47DA-8C57-
15243D4A8CB9). Manager will load the plug-in and provide it with an IMoraeManagerApp
interface via a call to IManagerExtension::SetApplication.

If the plug-in wishes to receive event notifications, it must implement the
IMoraeManagerAppEvents interface and attach to Manager’s connection point. To do this, the
plug-in must:

1. Call QueryInterface on the IMoraeManagerApp interface to get its

IConnectionPointContainer interface.

2. Call IConnectionPointContainer::FindConnectionPoint with the

IID_IMoraeManagerAppEvents id (defined below) to get an IConnectionPoint interface.

3. Call IConnectionPoint::Advise to subscribe to notifications. Note that the plug-in is

expected to call IConnectionPoint::Unadvise to allow Manager to release its interface

when it receives a call to IManagerExtension::SetApplication with a NULL interface

pointer as an argument.

Note: Methods that return BSTRs that will be displayed to the user all use a locale ID to indicate
the language. At this time (Morae release 3.3.1), Morae is only offered in an English version.

Interfaces:
1. IManagerExtension (derives from IUnknown)

The plug-in must implement this interface. Manager will call the appropriate methods

on this interface to provide an IMoraeManagerApp interface and to determine what

menu commands the plug-in would like to add to Manager’s main menu.

Interface ID:

 IID_IManagerExtension = 956A298A-CC6D-4F00-9C10-A28303B12DF2

Methods:

a. HRESULT GetCmdCount(

REFGUID guidView, [in]

int* pnCmdCount) [in]

This method asks for the number of commands that will be added to the plug-in
menu for this view.

Arguments:

i. guidView – Ref to a GUID that identifies the tab in the Manager UI that
these commands will be displayed on. The possible values are:

a. 56447BD5-097D-4038-8442-A2005A6D3D80 (Analyze tab)
b. 67F4DE0F-57DF-430C-8F34-32070C90F13B (Graph tab)
c. 33488129-2CAC-49AF-83D2-F997ED137C97 (Present tab)

ii. pnCmdCount – Pointer to an int value that should be set to the number of
commands.

b. HRESULT GetCmdParam(

REFGUID guidView, [in]
int nCmdIndex, [in]
BSTR* pstr, [out]

int* pnCmdID, [out]

long nLocaleID) [in]

This method is called to get the details of each command that will be added to the
menu. It will be called for each command, based on the output from GetCmdCount.

Arguments:

i. guidView – Ref to a GUID that identifies the tab in the Manager UI that
these commands will be displayed on. The possible values are listed above
under GetCmdCount.

ii. nCmdIndex –1-based index into the list of commands.

iii. pstr – Pointer to a BSTR value. It should be set to the string that should be
displayed in the menu. The plug-in should allocate the system string. The
caller will de-allocate.

iv. pnCmdID - Pointer to an int value that should be set to the ID that the plug-
in wants to assign to this command. When the user selects this command,
this is the ID that will be provided in the call to ExecuteCmd.

v. nLocaleID – This is a LCID value that indicates the language that the string
should be in.

c. HRESULT GetExtensionName(

BSTR* pstr, [out]
long nLocaleID) [in]

This method requests the name of the extension in a form that can be displayed to
the user.

Arguments:

i. pstr –Pointer to a BSTR value. This should be set to a string that can be
displayed to the user to identify the plug-in. It will appear as the label of the
flyout menu item that will hold the list of commands. The plug-in allocates
this system string. The caller will de-allocate.

ii. nLocaleID – This is a LCID value that indicates the language that the string
should be in.

d. HRESULT ExecuteCmd(

int nCmdID, [in]
VARIANT varHwnd) [in]

This method requests that the plug-in execute the command that was selected by
the user.

Arguments:

i. nCmdID – Specifies the ID of the command that the user selected. This ID
was provided by the plug-in in the GetCmdParam method.

ii. varHwnd - Provides the HWND of Manager’s main window. If the command
requires display of a dialog, this HWND should be the owner of the dialog.
The datatype of this variant may be VT_UI4 or VT_UI8.

e. HRESULT SetApplication(

IMoraeManagerApp* pApp) [in]
This method provides the plug-in with Manager’s IMoraeManagerApp interface.
This interface (described below) can be used to query information from and issue
commands to Manager.

Arguments:

i. pApp – Pointer to Manager’s IMoraeManagerApp interface. If the plug-in
stores this pointer, it should call AddRef on it. Each AddRef call must be
balance by a Release call when the plug-in no longer needs the interface.

This pointer may be NULL. In that case, the plug-in must release an existing
pointer and call Unadvise on Manager’s IConnectionPoint interface if it has
requested event notification.

2. IMoraeManagerApp (derives from IUnknown)
This interface is implemented by Manager to provide information to plug-ins and to
execute command from plug-ins. Plug-ins can also call QueryInterface on
IMoraeManagerApp to get an IConnectionPointContainer interface as described above
to subscribe to event notification.

Interface ID:

 IID_IMoraeManagerApp = FE8F168E-E75C-4015-9A6A-FFE93B1EEE16

Enumerations:
a. ManCmndType

i. ManCmndSetPlayerTime
Commands the video display in Manager to move to a particular time in the
recording.

ii. ManCmndEditItemName
Commands Manager to bring up the in-place editor for an item in the
treeview.

iii. ManCmndPlayEvent
Commands Manager to play the time segments encompassed by an event
from the recording.

iv. ManCmndZoomToEvent
Commands Manager to zoom its timeline display to the outer boundaries of
the time segments encompassed by an event from the recording.

v. ManCmndAddWndToViewMenu
Commands Manager to add a window to its View menu so that the user can
choose to show or hide the window.

vi. ManCmndRemoveWndFromViewMenu
Commands Manager to remove a window from its view menu that had
previously been added via a ManCmndAddWndToViewMenu command.

vii. ManCmndVideoClipsFromEvent
Commands Manager to create one or more video clips from an event. The
event must encompass one or more time segments.

b. ManParamType
i. ManParamGetPlayerTime

Requests the current time on display in the player.
ii. ManParamIsPlayerPlaying

Asks Manager whether the player is currently playing.
iii. ManParamGetPlayInOutTimes

Requests the current times of the in and out markers in the player’s
timeline.

iv. ManParamGetMainHwnd
Requests the HWND of Manager’s main window.

Methods:
a. HRESULT RunManagerCommand(

ManCmndType nCmndType, [in]
VARIANT varParam1, [in]
VARIANT varParam2) [in]

This requests that Manager run one of the commands identified in the
ManCmndType enumeration.

Arguments:

i. nCmndType – Identifies the desired command.
ii. varParam1 – VARIANT to provide additional information. This depends on

the command type.
iii. varParam2 - VARIANT to provide additional information. This depends on

the command type.

Supported values for nCmndType and the VARIANT types:
i. ManCmndSetPlayerTime

a) varParam1 – Type = VT_I8: Set the llVal to the target time
expressed in 100 nanosecond units from the start of the recording.

b) varParam2 – Not used.
ii. ManCmndEditItemName

a) varParam1 – Type = VT_UNKNOWN: Set the punkVal to a pointer to
the IUnknown interface of an object that also implements
IDisplayableItem.

b) varParam2 – Not used.
iii. ManCmndPlayEvent

a) varParam1 – Type = VT_UNKNOWN: Set the punkVal to a pointer to
the IUknown interface of an object that also implements
IMoraeEvent.

b) varParam2 – Not used.
iv. ManCmndZoomToEvent

a) varParam1 – Type = VT_UNKNOWN: Set the punkVal to a pointer to
the IUknown interface of an object that also implements
IMoraeEvent.

b) varParam2 – Not used.
v. ManCmndAddWndToViewMenu

a) varParam1 – Type = VT_BSTR: Set the bstrVal to the string that
should be added to the View menu.

b) varParam2 – Type = VT_UI4: Set the ulVal to the HWND of the
window that the user should be allowed to show or hide.

vi. ManCmndRemoveWndFromViewMenu
a) varParam1 – Type = VT_BSTR: Set the bstrVal to the string that

should be removed from the View menu.
b) varParam2 – Type = VT_UI4: Set the ulVal to the HWND of the

window that the user should no longer be allowed to show or hide.

vii. ManCmndVideoClipsFromEvent
a) varParam1 – Type = VT_UNKNOWN: Set the punkVal to the

IUnknown interface of the event that will be used to create the
video clips. This object must implement the IMoraeEvent interface.
The IMoraeEvent::GetTimeRange method will be called to identify
the beginning and end time(s) for the clips that will be created. If
this object also implements IDisplayableItem, the name of the clip(s)
will be derived from the event name.

b) varParam2 – Type = VT_ UNKNOWN: Set the punkVal to the
IUnknown interface of the recording that this event belongs to. This
interface was supplied to the plug-in that represents the event
stream that owns the event in the
IMoraeEventStream::SetRecording method.

b. HRESULT GetManagerParameter (

ManParamType nParamType, [in]
VARIANT varModifier, [in]
VARIANT* pvarParam) [out]

This requests information from Manager. Arguments will depend on the type of
information requested.

Arguments:

i. nParamType – Member of the ManParamType enumeration that identifies
the type of information requested.

ii. varModifier –VARIANT whose type depends on the type of information
requested.

iii. pvarParam – VARIANT whose value will be set to the requested information.

Supported values for nCmndType and the VARIANT types:

i. ManParamGetPlayerTime
a) varModifier – Not used.
b) pvarParam – Will be set to a type of VT_I8. The llVal will be set to

the current player time in 100 nanosecond units from the start of
the recording.

ii. ManParamIsPlayerPlaying
a) varModifier – Not used.
b) pvarParam – Will be set to a type of VT_BOOL. The boolVal will be

set to VARIANT_TRUE if the player is currently playing,
VARIANT_FALSE if not.

iii. ManParamGetPlayInOutTimes
a) varModifier – Not used.
b) pvarParam – Will be set to a type of VT_I8 | VT_ARRAY. The parray

value will be set to a LPSAFEARRAY of REFERENCE_TIME values that
give the in and out points in 100 nanosecond units from the start of
the video.

iv. ManParamGetMainHwnd
a) varModifier – Not used.
b) pvarParam – Will be set to a type of VT_UI4. The ulVal will be set to

the HWND of Manager’s main window.

3. IMoraeManagerAppEvents(derives from IUnknown)
A Manager extension plug-in can optionally implement this interface to receive

notifications from Manager of user-driven events.

Interface ID:

 IID_IMoraeManagerAppEvents = 92E4739A-A551-40FC-B2A5-6C27B4B2FB38

Methods:

a. HRESULT NotifyEvent(

REFGUID idEventType, [in]

VARIANT varData) [in]

 Arguments

i. idEventType – Reference to a GUID that identifies the event type. Details of
possible values are listed below.

ii. varData – VARIANT that contains the data that describe the event. Details
are provided below.

The types of events that plugins can listen for are listed in the following table:

Event Name Event GUID Description of Event

Object Created C394F78B-D40B-4DBC-
8EEB-9186720DFF65

Occurs after a new object has been created

Object Deleted D39CFAEA-E81C-4609-
A961-1B069884FD66

Occurs after an object has been deleted

Object Properties
Changed

38B72223-8B98-48E5-
ADC1-03F0FE6BE17B

Occurs after an object has been modified

Object Selected 0CF2EF72-94F1-41D2-B9F8-
245687A35BA1

Occurs after a new object has been
selected in the project tree view

Player End Reached C31DB0E9-A4CE-499F-A1F9-
24BC5D02C3AB

Occurs after an object has been played to
its end

Player Object
Changed

17002E7B-BFDA-438C-
95CE-6E6EB5A681C4

Occurs after a new object has been loaded
into the playing screen

Player Paused D1304D27-3517-4D43-
A58D-1C9A7AFC2724

Occurs after the object playing has been
paused

Player Skipped FB8278F1-C3C2-416F-81A5-
2CFE1710BEF2

Occurs after an object playing skips
forward or backward

Player Started D1304D27-3517-4D43-
A58D-1C9A7AFC2724

Occurs after an object starts playing

Project
(Workspace)
Closing

4CC86A83-09E9-45AA-
9558-6FFD06A44215

Occurs before a project closes. Allows
plugins time to perform cleanup
operations

Project
(Workspace)
Opened

E12DCC26-0A3D-4149-
A568-86FCFFFD1E08

Occurs immediately after a project has
been opened

Tab Changed FDA5D326-23DE-4BEE-BF2-
D6C61797F7B7

Occurs after a different tab is selected (i.e.
Analyze, Graph, Present)

idEventType is set to the GUID corresponding to the event that has occurred.
varData is set to a value specific to the type of event that has occurred.

The values for varData for each event are shown in the table below:

Event Name VARIANT Type Description of VARIANT Data

Object Created VT_UNKNOWN Contains an IUnknown pointer to the object that was
created

Object Deleted VT_UNKNOWN Contains an IUnknown pointer to the object that was
deleted. Note: IMoraeObj functions are still safe to
call on this object.

Object
Properties
Changed

VT_UNKNOWN Contains an IUnknown pointer to the object whose
properties were changed

Object Selected VT_UNKNOWN Contains an IUnknown pointer to the object that was
selected in the project tree

Player End
Reached

VT_I8 Contains the time reached at the end of the object
before the player time is reset

Player Object
Changed

VT_UNKNOWN or
VT_EMPTY

Contains an IUnknown pointer to the object that was
loaded into the player or is empty if no new object
was loaded (e.g. a non-playable object was selected)

Player Paused VT_I8 Contains the time at which the player has stopped

Player Skipped VT_I8 Contains the time at which the player is resuming
playing

Player Started VT_I8 Contains the time at which the player has started
playing

Project
(Workspace)
Closing

VT_UNKNOWN Contains an IUnknown pointer to the project that is
about to close

Project
(Workspace)
Opened

VT_UNKNOWN Contains an IUnknown pointer to the project that has
been opened

Tab Changed VT_BSTR Contains the GUID of the new tab stored as a BSTR

For the Tab Changed event, the GUIDs for the views are listed in the table below

Tab Name Tab GUID

Analyze 56447BD5-097D-4038-8442-A2005A6D3D80

Graph 67F4DE0F-57DF-430C-8F34-32070C90F13B

Present 33488129-2CAC-49AF-83D2-F997ED137C97

Note that if an event returns an IUnknown pointer, an IMoraeObj pointer can be obtained by
calling QueryInterface on the IUnknown pointer. Other interfaces that are available depend on
the type of object.

